您的位置首页  科技生活  人工智能

可解释性人工智能科普

可解释性人工智能科普

  1. 可解释性人工智能可以打破研究和应用之间的差距,加速先进的人工智能技术在商业上的应用:出于安全,法律,道德伦理等方面的原因,在一些管制较多的领域场景例如医疗,金融等,会限制无法解释的人工智能技术的使用。

  3. 有助于人工智能模型的使用:可解释性可以帮助用户理解人工智能所做出的决策,使得用户能更有效地使用模型,也能纠正用户在使用模型时因为不清楚算法所做的事情而产生错误的操作;

  4. 可解释性人工智能能增加用户的信任度:用户知道了人工智能决策的依据之后,会更加信任人工智能所做出的政策。

  可解释性人工智能可以更好的帮助研究人员有效的理解模型做出的决策,从而发现模型做出的决策偏差并且针对性的纠正错误,提升模型的性能;可解释性算法可以找出算法的薄弱点,并针对性的加入噪音来促进算法的鲁棒性,例如对抗性学习;可解释性可以确保只有有意义的变量才能推断出输出,来使得决策过程中因果关系更加线.医疗领域:可解释性人工智能可以根据输入的数据症状或者 CT 图,给出一个可解释性的预测结果,来辅助医生进行诊断。假如模型是不可解释的,无法确定模型是怎么进行决策的,医生也不敢轻易使用人工智能提供的结果进行诊断。

  4.信息安全:通过 XAI 技术获取的模型可解释性信息,可以加入到对抗性环境中,对模型进行更有效的攻击,找出模型安全性较差的环节并进行修复,利用 XAI 技术来提升系统安全性。

  5.专家系统:专家系统是一类具有专门知识和经验的计算机智能程序系统,采用知识表示和知识推理技术模拟通常由领域专家才能解决的复杂问题。专家系统也需要很强的解释性。

  1.信息性:信息性是最常用也是用户受众最广的解释性目标,几乎所有受众都能使用这个解释性目标。使用人工智能模型的最终目的是支持决策[3]

  2.可移植性:这是使用第二常用的目标,一般应用受众为领域专家和从事数据科学的人员。可移植性表示了人工智能方法能否在不同的场景和数据下很好的应用,可移植性高的算法拥有更广泛的应用场景。可解释人工智能可以提升算法的可移植性,因为它可以清楚的表示出算法的决策过程,以及可能影响模型应用的边界值,这有助于用户在不同的场景中应用算法[4]

  3.可访问性:应用频率第三的目标是可访问性,主要受众是产品开发团队以及用户。可访问性表示的是能否用非专业的解释方式来进行算法的解释,,保证非专业人员也能明白算法的决策过程,降低了用户在对算法提供改进意见时的技术准入门槛,保证用户能参与改进或者开发人工智能模型的过程中[5]

  [7],例如未观察到的异质性,不同模型之间比率可能会无效等等。另外想要线性回归模型保持可模拟性和可分解性,模型不能过大,而且变量必须被用户理解。

  :即 K 最近邻算法,选择测试样本的 K 个最近邻的类别中最多的类别作为样本类别的预测结果。KNN 的模型可解释性取决于特征数量、邻居数量(即 K 值)和用于度量样本之间相似性的距离函数。如果 K 值特别大则会降低 KNN 的可模拟性,而如果特征或者距离函数较为复杂,会限制 KNN 模型的可分解性。

  ,在可解释性上表现非常好,因为它和人类平时思考模式相近,易于理解和解释。相对应的规则学习的泛化能力就较差了。基于规则的学习广泛应用于专家系统的知识表示

  。但是需要注意,模型规则数量会提升模型的性能,但是同时也会降低解释性。规则的长度也不利于可解释性。需要增加可解释性,只需要放宽规则约束。

  通过一个或者一组输入特征来对输入进行扰动,从而观察其与原始输出的差异,来得到特征重要性。基于扰动的方法可以直接估计特征的重要性,使用简单,通用性强。但是每次只能扰动一个或一组特征,导致算法速度缓慢。另外,一些复杂的机器学习模型是非线性的,解释受选择的特征的影响很大。较为经典的基于扰动的方法有 LIME

  LIME,全称 Local Interpretable Model-agnostic Explanations,局部可解释模型不可知解释。其原理是以需要解释的模型为基础上来设计一个全新的简化的可解释模型,然后使用这个简单的模型,搭配可解释的特征进行适配,来接近复杂模型的效果,从而起到解释复杂模型的作用。

  作者在 LIME 的基础上提出了 Anchors 算法[15]。和 LIME 相比,LIME 是在局部建立一个可理解的线性可分模型,而 Anchors 的目的是建立一套更精细的规则系统。

  SHAP 的全称是 SHapley Additive exPlanation,是由 Shapley value 启发的可加性解释模型。它的核心思想是计算特征对模型输出的贡献,然后从全局和局部两个层面对“黑盒模型”进行解释。SHAP 是在实际使用中最常用的方法,易于操作。由于该方法可以得出各特征对模型的影响,主要被用于进行特征工程或者辅助数据采集。

  基于实例的方使用特定的实例作为输入来解释机器学习模型,因此它们通常只提供局部解释。基于实例的方法是模仿人类的推理方式而提出的,人类通常在推理时会使用类似的情况举例来提供解释。较常用的方法有反事实解释[17]

  对抗性攻击是特意使用能做出错误预测的例子来对模型进行解释。一个较为经典的用法是在识别图片中物体时,通过在照片中加入噪音来让机器学习模型无法正确识别。如图 8 所示,在猫的图片中加入了噪音后模型会将其识别为柠檬。但是对于人类来说图片是没有变化的。当发现了这种问题后便可以对其进行改进,从而提升模型的鲁棒性。

  深度学习模型一直被认为是黑箱模型,模型本身没有可解释性,因此必须使用模型可解释技术进行解释。解释性差已经成为了现在深度学习发展的最大的阻力之一。解释深度学习的常用方法有事后局部解释和特征相关性技术。下面按照不同的深度学习方法类型,分为多层神经网络、卷积神经网络 (CNN) 和循环神经网络 (RNN) 来分别介绍它们的可解释性方法。

  在推断变量间复杂关系下效果极佳,但是可解释性非常差。常用的可解释方法包括模型简化方法、特征相关性估计、文本解释、局部解释和模型可视化

  2)卷积神经网络:卷积神经网络主要应用于图像分类,对象检测和实例分割。虽然其复杂的内部关系使得模型难以解释,但是对于人类来说,图形会更好理解,因此 CNN 会比其他的深度学习模型更好解释。一般的可解释方法有两种:一是把输出映射到输入空间上,查看哪些输入会影响输出,从而理解模型的决策过程;二是深入网络内部,以中间层的视角来解释外部[22][23][24]。

  3)循环神经网络:RNN 广泛应用于固有序列数据的预测问题,如自然语言处理和时间序列分析。RNN 的可解释方法较少,主要分为两类:一是使用特征相关性解释方法,理解 RNN 模型所学习的内容;二是使用局部解释,修改 RNN 架构来对决策进行解释[25][26]。

  在 2.2 节的深度学习的模型可解释性技术中有提到,深度学习一直被认为是黑箱模型,在实际应用中一个较大的阻力就是相当于传统的机器学习方法,深度学习可解释性较差。这不仅限制了深度学习在管制较多的领域上的应用,而且也会影响到模型的优化。在无法知晓深度学习模型进行决策的原因的情况下是很难做出好的改进的。如果能对深度学习模型进行一个好的解释,将会使得深度学习发展速度更快。

  目前 XAI 在信息安全上的应用较少,但是在未来这可能会是一个重要的应用场景。XAI 可以通过模型的输入和输出来推理模型的数据和作用,从而被用于盗窃模型数据和功能

  。当然从另一个角度来看,通过 XAI 技术获取的信息可以加入到对抗性环境中,对模型进行更有效的攻击,找出模型安全性较差的环节并进行修复,来利用 XAI 技术来提升系统安全性。

  可解释性人工智能的目标是使人能够理解人工智能模型决策的过程,从而更好的对模型进行使用以及改进,并且增加用户的信任度,扩展人工智能技术的应用场景。深度学习算法的不可解释性是现在限制深度学习的发展的一个重要问题,因此可解释性的研究将会是深度学习未来重要的研究方向。另外,可解释性人工智能还能应用于信息安全领域,还能促进跨学科知识交流。可解释性人工智能才刚处于起步阶段,拥有非常广阔的研究前景。相信在不远的未来,可解释性人工智能会引领人工智能技术进行一次新的突破。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186
  • 标签:人工智能的5种定义
  • 编辑:刘卓
  • 相关文章
TAGS标签更多>>